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S T R U C T U R E  O F  C O M P R E S S I O N  S H O C K  W A V E S  

IN P O R O U S  E L A S T O P L A S T I C  M A T E R I A L S  

S. P. Kise lev  UDC 539.374 

The shock-wave structure in a porous elustoplastic material is studied. In a certain range of  
parameters, the existence of  a four-wave structure of  a compression shock wave is possible. 
Regimes in which a reflected shock wave does not appear at all have been found in the problem 
of shock-wave reflection from a rigid wall. In this case, the entire energy of  the incident shock 
wave transforms to thermal energy due to dissipation induced by the viscous collapse of the 
pores. 

For certainty, we consider the propagation of a shock wave (SW) in a porous material in a one- 
dimensional case for which Kiselev and Fomin [1] proposed equations of continuity, motion, energy, and 
state. In the present paper, we use only those equations which are necessary for a qualitative analysis of the 
SW structure. Directing the  xl axis of the Cartesian coordinate system perpendicular to the SW front, we 
determine the main values of the strain rate tensor 

0v  
~x = 0"--~' ~2 = ~s = 0 (1) 

and the main values of the stress tensor 

a l  = sl - p, ,92 = & ,  ,ga + ,9~ + & = 0, (2) 

where v is the material velocity along the zl axis, ~i, ai, and ,9i are the main values of the strain rate, stress, 
and stress deviator tensors. The pressure p is determined from the equation 

Here p8 is the density of the material, p is the mean density of the porous medium, ml  is the porosity, m2 is 
the volume concentration of the material, which determines the fraction of the unit volume occupied by the 
material, and K is the volume compression modulus. The superscript 0 here and in what follows corresponds 
to the initial unstressed state. In formula (3), we ignore the thermal pressure, which corresponds formally to 
T = 0 and, according to the Nernst theorem, ,9 = 0, where T is the temperature and S is the entropy. This 
approximation is valid for weak shock waves and low porosity. In this case, these conditions are assumed to be 
satisfied. In the numerical calculations presented below, we consider weak shock waves in steel with a pressure 
p < 10 GPa behind the shock wave and a low porosity ml < 10 -2. We note that  the influence of thermal 
effects is taken into account in the numerical solution, since a complete system of equations from [1] is solved; 
however, as the calculation shows, the contribution of the thermal pressure to the total pressure is very small. 
Hence, Ecls. (2) and (3) define the adiabat of the porous material al = al(p). The function ,91(p) is found 
from the following conditions of uniaxial deformation: the deformation of the porous material is elastic for 
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]$1[ < 2I"/3 and elastoplastic for [$1[ = 21I/3. According to [1], we present the increment of Sf in the form 

-4pdp/(3p),  I&l < 21I/3, 
dS1 = -2dY]3,  ]$11 = 2Y/3, (4) 

where p is the shear module and Y is the yield strength of a porous material, which depends on the pressure 
p and porosity ml [1]. A formula that defines Y = Y(p, ml) is given in [1]. In what follows, we need only the 
qualitative dependence Y(p) for rnl = const shown in Fig. 1. The pressure pz determines the point where the 
yield strength vanishes; therefore, Y = 0 for p >1 pz. The quantity p. determines the pressure at which the 
collapse of the pores begins. It is found from the formula 

p, = (2/3) Ys In (1/rhl), ~1 = kin1, k = 1.7. (5) 

For the porosity ml < 10 -2 the pressures pz and p, are close to each other [1], and in the qualitative analysis 
we assume that p. ~ pz. The change in porosity caused by the collapse of the pores is described by the 
equation 

rhl 3 iv, - p  
- - - ,  p > p,.  (6) 

ml 4 r/ 

Using (1)-(6), we plot the qualitative dependence a = a(V),  where a = - a l  and V = 1/p is the 
specific volume, which is called the adiabat of the porous material (Fig. 2). On the section S K  we have an 
elastic load 15'1[ < 2II/3, and from (1)-(4) we obtain 

a = p - & ,  & = - ( 4 1 3 ) g ( V o / V  - 1). (7) 
The pressure p = p(V) is found from (3), where we should assume that p = 1IV. The yield condition 
ISI[ = 2I"/3 is satisfied at the point K; therefore, on the section K A  we have 

= p + 2 y ( p ) ,  (8) 

where p = p(V) is determined from (3) and the point A is found from the condition Y = 0. If the stress is 
a > aA (aA is the pressure at the point A), the pores in the porous body collapse. In this case, for a given V, 
the pressure lies within the interval between the equilibrium adiabat pr(V) (the dot-and-dashed curve AR) 
and the frozen adiabat pi(V) (the dashed curve AM). The equilibrium adiabat pr(V) describes slow processes 
where each value of pressure corresponds to an equilibrium value of porosity. Assuming rhl = 0 in Eq. (6) 
and taking into account Eq. (3), we obtain 

2 ( 1 ) ,  2Ys l n (  1 ) V o m  0 
P " =  5Ys ln  ~ 3K-  ~ + V ( 1 - m l )  1 = 0 .  (9) 

Slow processes are also those in which the characteristic time of variation of the mean parameters At 
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is significantly greater than the relaxation time r related to the collapse of the pores. From Eq. (6) it follows 
that the characteristic relaxation time can be evaluated by the formula r ~ q/(p, -p ) .  The reverse inequality 
At << r is valid for fast processes. The frozen adiahat pf(V) describes fast processes in which the porosity 
does not have enough time to change significantly, and the frozen adiabat equation follows from formula (3) 
if we assume that  m~. = m~ 

Knowing the adiabat a(V) (Fig. 2), we can determine the propagation velocity of small perturbations 
(the speed of sound) 

0V" 

Using formulas (7), (8), and (11), we find the speed of sound in the elastic region S K  

and in the plastic region it is 

r )/ c, = K + '5/J p0, 

(11) 

( (12) ~ = 1 + 5 0 p l O p "  

It follows from [1] that the derivative OY/Op ---* - 3 / 2  as p ~ px; therefore, from (12) we obtain cp --. 0 as 
p --* pz. In the region p > pz there is a spectrum of the speed of sound from equilibrium cr to frozen cf, which 
axe determined from (9)-(11): 

, ~ K _ _  ( 1 (1 3K'~2Ys m l-'~"~'Jrn]V'~-l'~J" 

The resultant relationships for the adiabat and the speeds of sound allow us to analyze qualitatively the 
propagation of a shock wave in a porous material. 

Let a shock wave propagate in a porous material. The final state behind this SW is located at the 
point F that lies on the intersection of the adiahat and the Rayleigh line r = j2(V0 - VF) that  issues out 
of the point S (j = v / V  is the mass flux). Since the adiabat S K A  is convex, the Rayleigh line crosses it at a 
certain point W, which leads to an ambiguous solution. Hence, such an SW cannot exist. It splits into several 
waves that follow one another. Since the steepest section is SK,  the first wave is an elastic precursor with 
velocity ce and stress aK. Then follows a plastic wave whose velocity cp decreases as a increases, which leads 
to the smearing of the wave in time. At the point A the speed of sound increases instantly from c~ to cr. The 
intersection of characteristics results in the emergence of a new shock wave. This new SW, in turn, splits into 
a frozen wave BC and a relaxation wave C F  (Figs. 2 and 3). The SW speed relative to the matter ahead 

of the front D = VB~/(aC -- r -- Vc) is greater than the speed of sound cp at the point B; therefore, 
the point B shifts down on the adiahat to the point X where the SW velocity equals the speed of sound 
[D = 

At the point C the speed of sound is c < D (see Fig. 2), and the frozen wave BC propagates faster 
than the relaxation wave CF. As noted above, there is a whole spectrum of speeds of sound from p > p, to 
cr in a porous material for c/. It follows from Fig. 2 that c I > D; hence, the condition of evolution of the 
frozen SW relative to the frozen speed of sound is valid. A region of uniform flow cannot exist between the 
relaxation and frozen shock waves. From the equations of motion and continuity [1] and the relation rh2 > 0 
it follows that the following inequalities are valid for a > ac:  

Ov Oa 
) > o, o~ < o, o~ < o. 
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Hence, the relaxation SW is a compression wave FC' (see Fig. 3). The amplitude of the relaxat ionSW decreases 
with time, since the rarefaction SW approaches and weakens it. Figure 4 shows wave profiles a(x)  at several 
times from 1 to 7/~sec with a step At = 2 ~sec that were obtained as a result of the numerical solution 
of the complete system of equations of [1] in the problem of collision of plates. A continuous steel plate of 
thickness hi = 1.4 cm hit a porous steel plate of thickness h2 = 5.8 cm and porosity m2 = 0.02 with a velocity 
up = 0.120 mm//Jsec. The strength parameters of steel were chosen equal to those in [1]: Ps = 7.85 g/cm 3, 
K -- 160 GPa, /~ = 80 GPa, Ys ~ 0.4 GPa, and viscosity of steel 7/ = 3 �9 103 Pa-sec.  The vertical solid 
curve in Fig. 4 corresponds to the contact boundary between the porous and continuous materials. It is seen 
that the SW has a four-wave structure and the amplitude of the relaxation SW decreases with time. As 
long as the rarefaction wave did not enter the porous material, the  maximum stress in the relaxation wave 
remained constant and the  width increased. In the porous material the rarefaction wave transforms to a shock 
rarefaction wave which decreases the amplitude and the width of the relaxation SW. 

An increase in the impact velocity vp and, hence, the SW velocity leads to an increase in the angle of 
inclination of the  Rayleigh line; therefore, the velocity of the frozen SW at some point E (see Fig. 2) equals 
the relaxation wave velocity. As a result, the amplitude of the frozen SW is determined from the Chapman-  
Jouguet-type condition at the  points E and X. It follows that  the amplitude of the frozen SW remains almost 
constant. For a greater SW velocity the final state is found at the point N, the amplitude of the frozen SW 
being determined from the intersection of the Rayleigh line and the frozen adiabat (the point M in Fig. 2). 
An increase in the SW velocity shifts the point X toward the point K.  For a certain SW velocity these points 
coincide, and the  shock wave consists of an elastic precursor and a plastic shock wave following behind it (a 
two-wave configuration). 

Of interest are the features that arise upon the SW reflection from a rigid wall. If the shock wave 
amplitude is rather  high and a complete collapse of the pores occurs behind the shock wave, then, owing to 
the nonlinearity of a ( V ) ,  the  SW reflection factor k = a , . / a i  is greater than two (ai is the stress behind the 
incident SW and ~'r is the  stress behind the reflected SW). To prove it, we note that  if the stress difference 
in the SW is A a  ~< 0.3 Mbar, the velocity difference Au  is found from the formula A u  = A a / p c .  Hence, the 
amplitudes of the incident and reflected waves are ai  = z i u i  and a,. = z , .ur ,  where zi  = pic i  a n d  zr  = p r ~ ,  the 
subscripts / and r referring to the incident SW and reflected SW, respectively. From the rigid wall condition 
we obtain ui  = Ur = Vp, and for the reflection factor we have k = 1 + z ~ / z i .  A complete collapse of the pores 
occurs behind the incident SW, and the reflected wave propagates in a continuous material whose acoustic 
impedance is zs = psCs. By virtue of the inequalities cs > c I > ci and p, > Pi and the condition zr = z5 we find 
that the reflection factor in this case satisfies the inequality k > 2. A decrease in the amplitude of the incident 
SW leads to the fact that  the collapse of the pores behind it is incomplete. As a result, the reflected SW 
propagates in a porous material,  the difference between the values of z~ and zi  decreases, and, consequently, 
the reflection factor k decreases. Finally, another case is possible where the pores do not collapse behind the 
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incident SW, but the entire process of collapse occurs behind the reflected SW; then we hav~ zi  ,~, zs and 
zr <<~ zi .  In this case, the reflected SW does not appear at all (k ~ 1). The energy transferred by the incident 
SW completely transforms to thermal energy due to the viscous collapse of the pores. This situation is similar 
to an absolutely inelastic impact where the entire kinetic energy of the colliding bodies transforms to heat. 

Figure 5 shows distributions of stresses a(z)  that  arise in porous steel at times t = 1, 2 , . . .  ,8 #sec 
counted from the moment  when the incident SW hits the rigid wall. The incident SW was induced by a piston 
that moved with a constant velocity vp = 0.016 mm/psec  in a material with porosity ml  ~ = 0.1. The rigid 
wall bounded the material on the  right at x = 1.1 cm. It is seen that  the amplitude of the reflected SW tends 
to zero and its width tends to infinity. The width of the relaxation SW is determined by the characteristic 
time of the collapse of the  pores l a x  -~ c r r  and r ~,, ~l/(P - P.)], and for p -,~ p. we have A x  -* oo. Figure 6 
shows the porosity ml  versus the coordinate z that  was calculated for the same times. It is seen that  in this 
case the collapse of the pores begins in the vicinity of the rigid wall behind the reflected SW. As the reflected 
SW propagates, the region of collapse of the pores extends and the porosity decreases. A further  decrease in 
the amplitude of the reflected SW leads to the appearance of a reflected elastoplastic wave with an amplitude 
p ,  - ai, behind which a relaxation wave of small amplitude and large width propagates. The  amplitude of the 
elastoplastic wave increases as vp decreases. At a certain value of vp the pores do not collapse behind the SW 
reflected from the rigid wall either. In this case, we have zr -~ zi ~ zs, and the reflection factor increases to 
k~ ,2 .  
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